

TECHNOMA Vol. 01, No. 02, 2022

PERANCANGAN KENDARAAN KAMPUS DENGAN PENGGERAK MOTOR LISTRIK

Ari Eko Prianto ¹,Erik Heriana²,Moh Azizi Hakim³, Sony Sukmara⁴,Dwi Susanto⁵

^{1,2,3,4,5} Fakultas Teknologi dan Informatika universitas Mathla'ul Anwar Banten Email: *Zeehakim@gmail.com

Abstrak. Maraknya teknologi mobil listrik pada saat ini sangat dibutuhkan demi mencapai tujuan pengganti mesin berbahan bakar minyak. Penggunaan mobil listrik dirasa efektif selain tidak menimbulkan polusi udara. Mobil listrik yang dirancang adalah jenis kendaraan kampus dengan kapasitas dua penumpang menggunakan motor BLDC (Brushless Direct Curent). Maka penulis akan membahas perancangan kendaraan kampus dengan penggerak motor listrik. Berdasarkan hasil perhitungan gaya-gaya yang bekerja pada kendaraan kampus, diperoleh gaya total sebesar 2.332,961 N, maka dibutuhkan daya maksimum sebesar 18.663,688 Watt. Dengan adanya gigi rasio dari transmisi sebesar 2,83 dan spoket gardan 3,75 maka daya maksimum yang dibutuhkan menjadi 1.758,65 Watt sehingga dapat disimpulkan bahwa: Motor yang dipakai pada perancangan kendaraan kampus adalah motor BLDC dengan adanya tinjauan pustaka sebelumnya motor BLDC lebih efisien dari segi daya, arus dan torsi. Keuntungan tambahan yaitu tidak adanya sikat sehingga mengurangi kerugian akibat gesekan, dan dari hasil menentukan kapasitas motor untuk menggerakan kendaraan kampus dibutuhkan daya 1.758,65 Watt. Maka motor BLDC yang digunakan adalah 2000 Watt.

Kata kunci: Perancangan Kendaraan Kampus, Motor BLDC, karakteristik BLDC

1 Pendahuluan

Kegiatan manusia pada saat ini banyak mengalami perkembangan, yang salah satunya adalah perkembangan pada bidang otomotif. Hal tersebut ditandai dengan meningkatnya permintaan jumlah kendaraan, yang digunakan sebagai sarana penunjang aktifitas kegiatan keseharian. Pesatnya perkembangan ilmu pengetahuan dan teknologi menimbulkan suatu ide, untuk menciptakan kendaraan alternatif sebagai pengganti kendaraan berbahan bakar minyak, yaitu dengan kendaraan terbarukan yang ramah dengan lingkungan [1][2][3][4][5][6].

Energi listrik adalah termasuk salah satu energi alternatif, yang bisa digunakan sebagai pengganti bahan bakar minyak. Energi listrik sendiri tidak asing dalam kehidupan keseharian manusia, dikarenakan pada saat ini energi listrik telah menjadi salah satu kebutuhan pokok pada masyarakat selain kebutuhan sandang, pangan dan papan. Keluwesan energi listrik dalam mengubah energi menjadi bentuk energi lain (mekanis, panas, cahaya) serta penyalurannya yang mudah menyebabkan energi menjadi pilihan utama. Kebutuhan akan energi listrik semakin meningkat, sejalan dengan peningkatan kesejahteraan penduduk. Penggunaan energi listrik khususnya untuk keperluan rumah tangga juga semakin beragam, sebagai akibat dari ditawarkan berbagai peralatan rumah tangga yang memanfaatkan energi listrik seperti setrika, *majicjar*, kulkas, pompa air dan sebagainya. Penggunaan kendaraan listrik dirasa akan lebih efektif, karena selain tidak menimbulkan polusi, kontruksinya juga lebih sederhana, suaranya halus, tahan lama, serta memiliki efisiensi energi yang tinggi dibanding dengan kendaraan berbahan bakar minyak. akan tetapi, biaya yang harus disediakan untuk memiliki mobil listrik relatif lebih tinggi dari pada mobil BBM, dengan latar belakang tersebut diatas, maka kami dari mahasiswa UNMA Banten memiliki ide untuk membuat mobil listrik dengan harga ekonomis[7][8][9][10].

Untuk sebuah kendaraan listrik tentu membutuhkan beberapa komponen yang merupakan satu kesatuan, diantaranya sistem rangka dan sasis, sistem roda, sistem pengereman, sistem kemudi, dan sistem penggerak. Dalam hal ini motor listrik adalah sebagai komponen utama, yang berfungsi sebagai penggerak pada mobil listrik. Ada beberapa macam jenis tipe motor listrik, sehingga keuntungan yang ditawarkan pada masing-masing kendaraan listrik yang digerakkan juga beragam. Maka dari itu untuk pada penyususan skripsi ini mengambil judul Perancangan Kendaraan Kampus dengan Penggerak Motor Listrik[11][12].

Penggunaan mobil listrik dirasa akan lebih efektif, karena selain tidak menimbulkan polusi, kontruksinya juga lebih sederhana, suaranya halus, tahan lama, serta memiliki efisiensi energi yang tinggi dibanding dengan kendaraan berbahan bakar minyak. Efisiensi keseluruhan mobil listrik adalah 48% pada mobil listrik, sedangkan pada mobil berbahan bakar minyak hanya mencapai efisiensi sekitar 25%. Dengan demikian untuk menggerakan sebuah kendaraan yang mempunyai bobot sama pada kendaraan listrik hanya akan memerlukan energi yang jauh lebih rendah[13].

Akan tetapi, biaya yang harus disediakan untuk memiliki mobil listrik relatif lebih tinggi daripada mobil bbm, dengan latar belakang tersebut diatas, maka kami dari mahasiswa UNMA Banten memiliki ide untuk membuat mobil listrik dengan harga ekonomis Sedangkan pada menggunaan mobil listrik tentunya membutuhkan sebuah rangka chasisyang berfungsi sebagai penopang semua beban yang ada pada kendaraan,untuk sebuah kontruksi rangka chasis itu sendiri harus memiliki kekuatan,ringan dan mempunyai kenyamanan[14][15].

2 Metode penelitian

Metode pengumpulan data dalam dalam skipsi ini menentukan keberhasilan, oleh karena itu perlu direncanakan dengan tepat dalam memilih metode untuk pengumpulan data. Metode-metode yang digunakan untuk memperoleh data tersebut adalah sebagai berikut:

Studi Pustaka (Literatur)

Studi pustaka adalah suatu teknik pengumpulan data dengan cara mengumpulkan, mempelajari berkas-berkas, dokumen dan arsip-arsip yang ada di perpustakaan serta buku-buku penunjang lainnya. Selanjutnya data-data tersebut dijadikan referensi dan sekaligus mencoba mengaplikasikan teori-teori yang ada menjadi suatu rancangan alat.

Diskusi

Suatu teknik pengumpulan data dengan melakukan diskusi dengan pihak yang mengetahui serta menguasai segala permasalahan yang dihadapi dalam hal mobil listrik dan motor BLDC. Dalam metode ini penulis melakukan diskusi dengan dosen pembimbing dan temanteman.

3 Hasil dan Pembahasan

Langkah langkah perhitungan yang dibutuhkan untuk menghitung gaya hambat adalah sebagai berikut :

1. Menghitung gaya hambat *rolling* (F_{rr}) dengan koefisien rolling resistance (μ_{rr}) = 0,005, massa mobil (m) = 500 Kg dan kecepatan gravitasi (g) = 9,8 ms⁻² menggunakan persamaan 2.2:

$$F_{rr} = \mu_{rr} m g$$

$$F_{rr} = 0.005 \times 500 \times 9.81$$

$$F_{rr} = 24,525 N$$

2. Menghitung gaya hambat *aerodynamic* (F_{ad}) dengan massa jenis udara (ρ) = 1,25, Luas frontal area (A) = 2,16 m² dan kecepatan relatif kendaraan (V) = 8 m/s menggunakan persamaan 2.1

$$F_{ad} = \frac{1}{2} \rho A C_d V^2$$

$$F_{ad} = \frac{1}{2} (1,25)(2,16)(0,19)(8)^2$$

$$F_{ad} = 16,416 N$$

3. Perhitungan hambatan total (F_{tmax}) ketika kendaraan posisi kecepatan 30km/h di jalan lurus yaitu dengan menjumlahkan hambatan aerodinamis (F_{ad}) dan hambatan *rolling resistance* (F_{rr}) sebagai berikut:

$$F_{tmax} = F_{ad} + F_{rr}$$

 $F_{tmax} = 16,416 N + 24,525 N$
 $F_{tmax} = 40,941 N$

4. Menghitung gaya hambat tanjakan (F_{hc}) pada sudut tanjak 30^0 dengan sin $30^0=\frac{1}{2}$ menggunakan persamaan 2.3

$$F_{hc} = m g \sin 30^{\circ}$$

$$F_{hc} = (500)(9,81)(\frac{1}{2})$$

$$F_{hc} = 2.292 N$$

5. Menghitung total gaya (F_{te}) yang dibutuhkan ketika menanjak dengan menambahkan hambatan aerodinamis (F_{ad}) , hambatan rolling resistance (F_{rr}) , dan hambatan tanjak (F_{hc}) menggunakan persamaan 2.4

$$\begin{split} F_{te} &= F_{ad} + F_{rr} + F_{hc} \\ F_{te} &= 16,416 \ N + 24,525 \ N + 2.292 \ N \\ F_{te} &= 2.332,961 \ N \end{split}$$

6. Menghitung daya (P_{max}) kendaraan yang dibutuhkan dengan hambatan total (F_{tmax}) = 40,941 N dan kecepatan maksimum kendaraan (V_{max}) = 8 m/s menggunakan persamaan 2.5 sebagai berikut:

 $P_{max} = F_{tmax} \times V_{max}$

 $P_{max} = 40,941 N \times 8 m/s$

 $P_{max} = 327,528 Watt$

 $P_{max} = 0,33 \ kW$

7. Menentukan daya maksimum (P_{te}) yang dibutuhkan oleh kendaraan dengan persamaan 2.5

 $P_{te} = F_{te} \times V$

 $P_{te} = 2.332,961 \times 8$

 $P_{te} = 18.663,688 Watt$

4 Kesimpulan

Berdasarkan hasil perhitungan gaya-gaya yang bekerja pada kendaraan kampus, diperoleh gaya total sebesar 2.332,961 N, maka dibutuhkan daya maksimum sebesar 18.663,688 Watt. Dengan adanya gigi rasio dari transmisi sebesar 2,83 dan spoket gardan 3,75 maka daya maksimum yang dibutuhkan menjadi 1.758,65 Watt sehingga dapat disimpulkan bahwa:

Motor yang dipakai pada perancangan kendaraan kampus adalah motor BLDC dengan adanya tinjauan pustaka sebelumnya motor BLDC lebih efisien dari segi daya, arus dan torsi. Keuntungan tambahan yaitu tidak adanya sikat sehingga mengurangi kerugian akibat gesekan, dan dari hasil menentukan kapasitas motor untuk menggerakan kendaraan kampus dibutuhkan daya 1.758,65 Watt. Maka motor BLDC yang digunakan adalah 2000 Watt.

Hasil uji coba kendaraan kampus ditemukan kendala yaitu timbul getaran dari putaran motor listrik yang disebabkan oleh ketidak seimbangan antara coupler as motor listrik dengan as poros engkol.

5 Daftar pustaka

- [1] Robbyrizky and Z. Hakim, "Expert System to Determine Children's Characteristics for Special Need Students at SLB Pandeglang Banten with Forward Chaining Method," *J. Phys. Conf. Ser.*, vol. 1477, no. 2, pp. 236–240, 2020, doi: 10.1088/1742-6596/1477/2/022021.
- [2] T. Menuju, T. Kuliner, D. I. Menes, and P. Banten, "A*star," vol. 4, pp. 85–94, 2020, doi: 10.29408/geodika.v4i1.2068.
- [3] A. Kurniawan, R. Rizky, Z. Hakim, and N. N. Wardah,

- "PENERAPAN METODE FORWARD CHAINING DALAM SISTEM PAKAR DIAGNOSIS KERUSAKAN KULKAS DI CV . SERVICE GLOBAL TEKNIK," vol. 5, no. 1, pp. 1–8, 2016.
- [4] S. Susilawati, "Penerapan Metode A*Star Pada Pencarian Rute Tercepat Menuju Destinasi Wisata Cagar Budaya Menes Pandeglang," *Geodika J. Kaji. Ilmu dan Pendidik. Geogr.*, vol. 4, no. 2, pp. 192–199, 2020, doi: 10.29408/geodika.v4i2.2754.
- [5] A. Sugiarto, R. Rizky, S. Susilowati, A. M. Yunita, and Z. Hakim, "Metode Weighted Product Pada Sistem Pendukung Keputusan Pemberian Bonus Pegawai Pada CV Bejo Perkasa," *Bianglala Inform.*, vol. 8, no. 2, pp. 100–104, 2020, doi: 10.31294/bi.v8i2.8806.
- [6] Z. Hakim *et al.*, "Implementasi Algoritma Forward Chaining Untuk Sistem Pakar Diagnosis Hama Tanaman Kacang Kedelai Pada Dinas Pertanian Pandeglang Provinsi Banten," vol. 8, no. 1, 2020.
- [7] A. G. Pratama, R. Rizky, A. M. Yunita, and N. N. Wardah, "Implementasi Metode Backward Chaining untuk Diagnosa Kerusakan Motor Matic Injection," *Explor. Sist. Inf. dan Telemat.*, vol. 11, no. 2, p. 91, 2020, doi: 10.36448/jsit.v11i2.1515.
- [8] R. Rizky, Z. Hakim, A. M. Yunita, and N. N. Wardah, "Implementasi Teknologi Iot (Internet of Think) Pada Rumah Pintar Berbasis Mikrokontroler Esp 8266," *JTI J. Teknol. Inf.*, vol. 4, no. 2, pp. 278–281, 2020, [Online]. Available: http://jurnal.una.ac.id/index.php/jurti/article/view/1452.
- [9] D. Karyaningsih, "Implementation of Fuzzy Mamdani Method for Traffic Lights Smart City in Rangkasbitung, Lebak Regency, Banten Province (Case Study of the Traffic Light T-junction ...," *J. KomtekInfo*, vol. 7, no. 3, pp. 176–185, 2020, [Online]. Available: http://lppm.upiyptk.ac.id/ojsupi/index.php/KOMTEKINFO/article/view/1398.
- [10] R. R. Rizky and Z. H. Hakim, "Sistem Pakar Menentukan Penyakit Hipertensi Pada Ibu Hamil Di RSUD Adjidarmo Rangkasbitung Provinsi Banten," *J. Sisfokom (Sistem Inf. dan Komputer)*, vol. 9, no. 1, p. 30, 2020, doi: 10.32736/sisfokom.v9i1.781.
- [11] Z. Hakim and R. Rizky, "Analisis Perancangan Sistem Informasi Pembuatan Paspor Di Kantor Imigrasi Bumi Serpong Damai

- Tangerang Banten Menggunakan Metode Rational Unified Process," vol. 6, no. 2, pp. 103–112, 2018.
- [12] R. Rizky, A. H. Wibowo, Z. Hakim, and L. Sujai, "Sistem Pakar Diagnosis Kerusakan Jaringan Local Area Network (LAN) Menggunakan Metode Forward Chaining," *J. Tek. Inform. Unis*, vol. 7, no. 2, pp. 145–152, 2020, doi: 10.33592/jutis.v7i2.396.
- [13] R. Rizky, "Sistem Pakar Untuk Mendeteksi Penyakit Infeksi Saluran Pernafasan dengan Metode Dempster Shafer di Kabupaten Pandeglang Provinsi Banten," no. 2597–3584, pp. 4–5, 2018.
- [14] R. Rizky, S. Susilawati, Z. Hakim, and L. Sujai, "Sistem Pakar Deteksi Penyakit Hipertensi Dan Upaya Pencegahannya Menggunakan Metode Naive Bayes Pada RSUD Pandeglang Banten," *J. Tek. Inform. Unis*, vol. 7, no. 2, pp. 138–144, 2020, doi: 10.33592/jutis.v7i2.395.
- [15] R. Rizky, T. Hidayat, A. Hardianto, and Z. Hakim, "Penerapa Metode Fuzzy Sugeno Untuk pengukuran Keakuratan Jarak Pada Pintu Otomatis di CV Bejo Perkasa," vol. 05, pp. 33–42, 2020.